
PicBasic Compiler

microEngineering Labs, Inc.

COPYRIGHT NOTICE

Copyright ©2004 microEngineering Labs, Inc.

All rights reserved.

This manual describes the use and operation of the PicBasic Compiler

from microEngineering Labs, Inc. Use of the PicBasic Compiler without

first obtaining a license is a violation of law. To obtain a license, along

with the latest version of the product and documentation, contact

microEngineering Labs, Inc.

Publication and redistribution of this manual over the Internet or in any

other medium without prior written consent is expressly forbidden. In all

cases this copyright notice must remain intact and unchanged.

microEngineering Labs, Inc.

Box 60039

Colorado Springs CO 80960-0039

(719) 520-5323

(719) 520-1867 fax

email: support@melabs.com

web: www.melabs.com

TRADEMARKS

EPIC and PicBasic are trademarks of microEngineering Labs, Inc.

BASIC Stamp and PBASIC are trademarks of Parallax, Inc.

PICmicro is a registered trademark of Microchip Technology Inc.

PicBasic Compiler

microEngineering Labs, Inc.

6/04

PicBasic Compiler

i

 TABLE OF CONTENTS

1. Introduction . 1

1.1. About This Manual . 2

2. Compiler Basics . 3

2.1. The PICmicro MCUs . 3

2.2. The Pins . 4

2.3. Software Installation . 5

2.4. Getting Started . 5

2.5. Program That PICmicro MCU 7

2.6. It’s Alive . 8

2.7. I’ve Got Troubles . 9

2.8. Coding Style . 11

2.8.1. Comments . 11

2.8.2. Symbols . 11

2.8.3. Labels . 12

2.8.4. GOTO . 12

3. Command Line Options . 13

3.1. Usage . 13

3.2. Options . 14

3.2.1. Option -C . 14

3.2.2. Option -D . 14

3.2.3. Option -L . 15

3.2.4. Option -OB . 15

3.2.5. Option -P## . 15

3.2.6. Option -Q . 16

3.2.7. Option -S . 16

4. PicBasic Programming . 17

4.1. Comments . 17

4.2. Numeric Constants . 17

4.3. String Constants . 17

4.4. Identifiers . 18

4.5. Line Labels . 18

4.6. Variables . 18

4.7. Symbols . 21

4.8. Multi-statement Lines . 21

PicBasic Compiler

ii

5. PicBasic Statement Reference . 23

5.1. BRANCH . 24

5.2. BUTTON . 25

5.3. CALL . 26

5.4. DEBUG . 27

5.5. EEPROM . 28

5.6. END . 29

5.7. FOR..NEXT . 30

5.8. GOSUB . 31

5.9. GOTO . 32

5.10. HIGH . 33

5.11. I2CIN . 34

5.12. I2COUT . 37

5.13. IF..THEN . 38

5.14. INPUT . 39

5.15. {LET} . 40

5.15.1. Multiplication 41

5.15.2. Bitwise NOT Operators 41

5.16. LOOKDOW N . 42

5.17. LOOKUP . 43

5.18. LOW . 44

5.19. NAP . 45

5.20. OUTPUT . 46

5.21. PAUSE . 47

5.22. PEEK . 47

5.23. POKE . 50

5.24. POT . 51

5.25. PULSIN . 52

5.26. PULSOUT . 53

5.27. PW M . 54

5.28. RANDOM . 55

5.29. READ . 56

5.30. RETURN . 57

5.31. REVERSE . 58

5.32. SERIN . 58

5.33. SEROUT . 60

5.34. SLEEP . 63

5.35. SOUND . 64

5.36. TOGGLE . 65

5.37. W RITE . 66

PicBasic Compiler

iii

6. Structure of a Compiled Program . 67

6.1. Target (PICmicro MCU) Specific Header (B##.INC)

. 67

6.2. PBH.INC . 68

6.3. PBC Generated Code . 69

6.4. PBL.INC . 69

7. Other PicBasic Considerations . 71

7.1. How Fast is Fast Enough? 71

7.2. Assembly Language . 72

7.2.1. Programming in Assembly Language

. 72

7.2.2. Assembly Language Examples 73

7.2.3. Placement of In-line Assembly 76

7.2.4. The PICmicro Macro Assembler 77

7.3. Interrupts . 78

7.4. Life After 2K . 80

8. Compiler / Stamp Differences . 81

8.1. Execution Speed . 81

8.2. Digital I/O . 81

8.3. Missing PC Interface . 82

8.4. BUTTON . 82

8.5. EEPROM, READ and W RITE 83

8.6. GOSUB/RETURN . 83

8.7. RANDOM . 84

8.8. SERIN/SEROUT . 84

8.9. Low Power Instructions . 84

8.10. SLEEP . 84

Appendix A . 87

Summary of Microchip Assembly Instruction Set 87

Appendix B . 89

Contact Information . 89

PicBasic Compiler

iv

PicBasic Compiler

1

1. Introduction

The PicBasic Compiler (or PBC) makes it quick and easy for you to

program Microchip Technology’s powerful PICmicro microcontrollers

(MCUs). The English-like BASIC language is much easier to read and

write than the quirky Microchip assembly language.

PBC also allows programs written for the original BASIC Stamp I to be

compiled for direct execution on members of the PICmicro MCU family of

microcontrollers. W hy would you want to do this?

Speed

Since PBC programs execute directly from the code space of the

PICmicro MCU rather than being fetched from a serial EEPROM, PBC

programs execute much faster than equivalent programs on a BASIC

Stamp. In fact, some instructions execute hundreds of times faster!

Cost

W hy pay $34 per project or, worse yet, per product? PBC allows

programs to be compiled directly into PICmicro MCUs costing $2 to $10.

W ith this kind of savings, the investment in the PicBasic Compiler and a

PICmicro MCU programmer could easily pay for itself after only a few

projects. Better yet, this lower cost could turn what was just a good idea

into a viable and competitive product.

Program Size

There is no fixed limit on the number of statements a program can have.

Maximum program length is dependent upon how many different

instructions are used (i.e. the number of different library routines that

must be loaded) and the code space available in the particular PICmicro

MCU.

PICmicro MCU Hardware

PBC defaults to create files that run on a PIC16F84 (or PIC16F84A)

clocked at 4MHz. Only a minimum of other parts are necessary: 2 22pf

capacitors for the 4MHz crystal, a 4.7K pull-up resistor tied to the /MCLR

pin and a suitable 5- volt power supply.

PicBasic Compiler

2

Many PICmicro MCUs other than the 16F84 may be used with the

PicBasic Compiler. However, the PicBasic Compiler will not work with

the older 16C5x series PICmicro MCUs. The 16C5x only provides a two

level stack. The PicBasic Compiler requires the 8 level stack provided by

the 14-bit core PICmicro MCUs.

1.1. About This Manual

This manual cannot be a full treatise on the BASIC language. It

describes the PicBasic Compiler instruction set and provides examples

on how to use it. If you are not familiar with BASIC programming, you

should acquire a book on the topic. Or just jump right in. BASIC is

designed as an easy-to-use language and there are additional example

programs on the disk and web site that can help get you started.

The next section of this manual covers installing the PicBasic Compiler

and writing your first program. Following is a section that describes

different options for compiling programs.

Programming basics are covered next, followed by a reference section

listing each PicBasic command in detail. The reference section shows

each command prototype, a description of the command and some

examples. Curly brackets, {}, indicate optional parameters.

The remainder of the manual provides information for advanced

programmers - all the inner workings of the compiler.

PicBasic Compiler

3

2. Compiler Basics

2.1. The PICmicro MCUs

The PicBasic Compiler produces code that may be programmed into a

wide variety of PICmicro microcontrollers having from 8 to 40 or more

pins and various on-chip features including A/D converters and hardware

timers and serial ports.

There are some PICmicro MCUs that will not work with the PicBasic

Compiler, notably the PIC16C5x series including the PIC16C54 and

PIC16C58. These PICmicro MCUs are based on the older 12-bit core

rather than the more current 14-bit core. The PicBasic Compiler requires

some of the features only available with the 14-bit core, the foremost of

which being the 8-level stack.

There are many, many PICmicro MCUs, some pin compatible with the ‘5x

series, that may be used with the PicBasic Compiler. See the

README.TXT file for the latest chip support list. For direct replacement of

a PIC16C54, 56 or 58, the PIC16C554, 558, 620(A), 621(A) and 622(A)

work well with the compiler and are very nearly the same price.*

For general purpose PICmicro MCU development using the PicBasic

Compiler, the PIC16F84 and PIC16F628 are the current PICmicro MCUs

of choice. These 18-pin microcontrollers uses flash technology to allow

rapid erasing and reprogramming to speed program debugging. W ith the

click of the mouse in the programming software, the PICmicro MCU can

be instantly erased and then reprogrammed again and again. Other

PICmicro MCUs in the 12C67x, 14000 and 16Cxxx series are either one-

time programmable (OTP) or have a quartz window in the top (JW) to

allow erasure by exposure to ultraviolet light for several minutes.

The PIC16F84 also contains 64 bytes (128 bytes for the PIC16F628) of

non-volatile data EEPROM memory that can be used to store program

data and other parameters even when the power is turned off. This data

area can be accessed simply by using the PicBasic Compiler’s READ and

WRITE commands. (Program code is always permanently stored in the

PICmicro MCU’s code space whether the power is on or off.)

By using the ‘F84 for initial program testing, the debugging process may

be sped along. Once the main routines of a program are operating

PicBasic Compiler

4

satisfactorily, a PICmicro MCU with more capabilities or expanded

features of the compiler may be utilized.

W hile many PICmicro MCU features will be discussed in this manual, for

full PICmicro MCU information it is necessary to obtain the appropriate

PICmicro MCU Data Sheets or the CD-ROM from Microchip Technology.

Refer to Appendix B for contact information.

*Selling price is dictated by Microchip Technology Inc. and its distributors.

2.2. The Pins

Pins used by PicBasic Compiler commands are numbered 0 - 7 as with

the BASIC Stamp I. These pins are mapped onto PICmicro MCU

hardware port B such that Pin0 refers to PORTB pin 0 or simply

PORTB.0 (or RB0), Pin1 refers to PORTB.1 and so forth up to Pin7

referring PORTB.7. The pin number, 0 - 7, has nothing to do with the

physical pin number of a PICmicro MCU. Depending on the particular

PICmicro MCU, Pin0 could be physical pin 6, 21 or 33, but in every case

it is PORTB.0.

PicBasic instructions that reference a pin number such as HIGH or LOW

want only the pin number 0 - 7, eg. High 3 (set Pin3 high). If High

Pin3 is entered instead, the results are unexpected. Always use only

the number or a SYMBOL that equates to a number with pin manipulation

instructions.

On the other hand, if the current state of a pin is required, to read a

switch for example, the whole pin name would be used, eg. If Pin4 =

0 Then loop. In this case the state of Pin4 (PORTB.4) is read and if it

is low (0) the program jumps to the label loop:. If Pin4 is high (1), the

program continues with the next instruction after the If..Then.

All of the pins may be set at the same time using the predefined variable

Pins. For example, Pins = 255 sets all of the pins high. The variable

Dirs is also predefined to allow setting of the pin’s directions.

There are only 8 pins, Pin0 - Pin7, defined by the BS1 while a PICmicro

MCU may have 13, 22, 33 or more actual I/O pins. Some library routines

such as I2COUT make use of some of these additional I/O pins

PicBasic Compiler

5

automatically. For access to other I/O pins, the PEEK and POKE

instructions were created.

2.3. Software Installation

The included software should be copied to your hard drive before use.

To install the software to your hard drive, run (click on) INSTALL.BAT. If

the PBC directory already exists, you may get an error message and the

installation will continue.

All of the necessary files will be installed to a subdirectory named C:\PBC

on the hard drive. The README.TXT file has the latest information about

the PicBasic Compiler.

2.4. Getting Started

For operation of the PicBasic Compiler you will use the included IDE or a

text editor or word processor for creation of your program source file,

some sort of PICmicro MCU programmer such as our EPIC Plus

PICmicro Programmer or melabs Serial Programmer, and the PicBasic

Compiler itself. Of course you also need a PC to run it all on.

The sequence of events goes something like this:

First, start the included or one of the other available IDEs/editors. Select

the PICmicro MCU you intend to use from the IDE’s drop-down list. Next,

create the BASIC source file for the program or open one of the BASIC

source files included with PBC. The source file name usually (but isn’t

required to) ends with the extension .BAS.

The text file that is created must be pure ASCII text. It must not contain

any special codes that might be inserted by word processors for their

own purposes. You are usually given the option of saving the file as pure

DOS or ASCII text by most word processors.

The following program provides a good first test of a PICmicro MCU in

the real world. You may type it in or you can simply grab it from the

SAMPLES subdirectory included on the original PicBasic Compiler

distribution disk. The file is named BLINK.BAS. The BASIC source file

should be created in or moved to the same directory where the PBC.EXE

file is located.

PicBasic Compiler

6

‘Example program to blink an LED connected to PORTB.0

about once a second

loop: High 0 ‘Turn on LED

Pause 500 ‘Delay for .5 seconds

Low 0 ‘Turn off LED

Pause 500 ‘Delay for .5 seconds

Goto loop ‘Go back and blink LED forever

End

Once you are satisfied that the program you have written will work

flawlessly, you can execute the PicBasic Compiler by clicking on the

IDE’s build or compile button. If you are using DOS, enter PBP followed

by the name of your text file at a DOS prompt. For example, if the text

file you created is named BLINK.BAS, at the DOS command prompt

enter:

PBC blink

The compiler will display an initialization (copyright) message and

process your file. If it likes your file, it will create an assembler source

code file (in this case named BLINK.ASM) and automatically invoke its

assembler to complete the task. If all goes well, the final PICmicro MCU

code file will be created (in this case, BLINK.HEX). If you have made the

compiler unhappy, it will issue a string of errors that will need to be

corrected in your BASIC source file before you try compilation again.

To help ensure that your original file is flawless, it is best to start by

writing and testing a short piece of your program, rather than to write the

entire 100,000 line monolith all at once and then try to debug it from end

to end.

The PicBasic Compiler defaults to creating code for the PIC16F84. To

compile code for PICmicro MCUs other than the ‘F84, simply use the -P

command line option described later in the manual to specify a different

target processor. For example, if you intend to run the above program,

BLINK.BAS, on a PIC16C74, compile it using the command:

PBC -p16C74 blink

PicBasic Compiler

7

2.5. Program That PICmicro MCU

There are two steps left - putting your compiled program into the

PICmicro microcontroller and testing it.

The PicBasic Compiler generates standard 8-bit Merged Intel HEX

(.HEX) files that may be used with any PICmicro MCU programmer

including our EPIC Plus PICmicro Programmer and melabs Serial

Programmer. PICmicro MCUs cannot be programmed with BASIC

Stamp programming cables.

The following is an example of how a PICmicro MCU may be

programmed using one of our programmers.

Make sure there are no PICmicro MCUs installed in the programmer

programming socket or any attached adapters.

If you are using the EPIC Programmer, hook it to the PC parallel printer

port using a DB25 male to DB25 female printer extension cable.

If you are using the melabs Serial Programmer, hook it to the PC serial

port using a DB9 male to DB9 female serial cable or hook it to the USB

port using a USB-to-serial adapter.

Plug the AC adapter into the wall and then into the programmer (or attach

2 fresh 9-volt batteries to the EPIC Programmer and connect the “Batt

ON” jumper. Using an AC adapter instead of batteries is highly

recommended.)

The LED(s) on the EPIC Programmer may be on or off at this point. Do

not insert a PICmicro MCU into the programming socket when an LED is

on or before the programming software has been started. The LED

should glow green on the melabs Serial Programmer indicating it is

ready.

Launch the programmer software. Once the programming screen is

displayed, select the PICmicro MCU you will be programming. Next, use

the mouse to click on Open file. Select BLINK.HEX or another file you

would like to program into the PICmicro MCU from the dialog box.

Once the file has been loaded, you can look at the Code or Memory

window to see your PICmicro MCU program code. You should also look

PicBasic Compiler

8

at the Configuration window and verify that it is as desired before

proceeding.

In general, the Oscillator should be set to XT for a 4MHz crystal and the

W atchdog Timer should be set to ON for PicBasic programs. Most

importantly, Code Protect should be OFF when programming any

windowed (JW) PICmicro MCUs. You may not be able to erase a

windowed PICmicro MCU that has been code protected. You can find

more information on these configuration fuses in the Microchip data sheet

for the device you are using.

W hen it all looks marvelous, it is time to insert a PICmicro MCU into the

programming socket and click on Program. The PICmicro MCU will first

be checked to make sure it is blank and then your code will be

programmed into it.

Once the programming is complete and the LED is no longer red, it is

time to test your program.

2.6. It’s Alive

The sample schematic below gives you an idea of the few things that

need to be connected to the PICmicro MCU to make it work. Basically all

you need is a pull-up resistor on the /MCLR line, a 4MHz crystal with 2

capacitors, and some kind of 5-volt power supply. W e have added an

LED and resistor to provide the output from the BLINK program.

PicBasic Compiler

9

Build and double check this simple circuit on a breadboard and plug in

the PICmicro MCU you just programmed. Our line of PICProto

prototyping boards is perfect for this kind of thing.

Connect a power supply. Your PICmicro MCU should come to life and

start blinking the LED about once a second. If it does not blink, check all

of the connections and make sure 5 volts is present at the appropriate

pins on the PICmicro MCU.

From these simple beginnings, you can create your own world-

conquering application.

2.7. I’ve Got Troubles

The most common problems with getting PICmicro MCUs running involve

making sure the few external components are of the appropriate value

and properly connected to the PICmicro MCU. Following are some hints

to help get things up and running.

Make sure the /MCLR pin is connected to 5 volts either through some

kind of voltage protected reset circuit or simply with a 4.7K resistor. If

you leave the pin unconnected, its level floats around and sometimes the

PICmicro MCU will work but usually it won’t. The PICmicro MCU has an

on-chip power-on-reset circuit so in general just an external pull-up

resistor is adequate. But in some cases the PICmicro MCU may not

power up properly and an external circuit may be necessary. See the

Microchip PICmicro MCU data books for more information.

Be sure you have a good crystal with the proper value capacitors

connected to it. Capacitor values can be hard to read. If the values are

off too much, the oscillator won’t start and run properly. A 4MHz crystal

with two 22pf (picofarad) ceramic disk capacitors is a good start for most

PICmicro MCUs. Once again, check out the Microchip data books for

additional thoughts on the matter.

Make sure your power supply is up to the task. W hile the PICmicro MCU

itself consumes very little power, the power supply must be filtered fairly

well. If the PICmicro MCU is controlling devices that pull a lot of current

from your power supply, they can put enough of a glitch on the supply

lines to cause the PICmicro MCU to stop working properly. Even an LED

display can create enough of an instantaneous drain to momentarily

PicBasic Compiler

10

clobber a small power supply (like a 9-volt battery) and cause the

PICmicro MCU to lose its place.

Check the PICmicro MCU data sheets. Some devices have features that

can interfere with expected pin operations. The PIC16C62x and ‘F62x

parts (the 16C620, 621, 622, 16F627 and 628) are a good example of

this. These PICmicro MCUs have analog comparators on PORTA.

W hen these chips start up, PORTA is set to analog mode. This makes

the pin functions on PORTA work in an unexpected manner. To change

the pins to digital, simply add the lines:

Symbol CMCON = $1f

Poke CMCON, 7

near the front of your program.

Any PICmicro MCU with analog inputs, such as the PIC12C67x,

PIC16C7xx and PIC16F87x series devices, will come up in analog mode.

You must set the pins to digital if that is how you intend to use them:

Symbol ADCON1 = $9f

Poke ADCON1, 7

Another example of potential disaster is that PORTA, pin 4 exhibits

unusual behavior when used as an output. This is because the pin has

an open collector output rather then the usual bipolar stage of the rest of

the output pins. This means it can pull to ground when set to 0, but it will

simply float when set to a 1, instead of going high. To make this pin act

in the expected manner, add a pull-up resistor between the pin and 5

volts. The value of the resistor may be between 1K and 33K, depending

on the drive necessary for the connected input. This pin acts as any

other pin when used as an input.

All of the PICmicro MCU pins are set to inputs on power-up. If you need

a pin to be an output, set it to an output, or use a PicBasic command that

does it for you. Once again, review the PICmicro MCU data sheets to

become familiar with the idiosyncrasies of a particular part.

Start small. W rite short programs to test features you are unsure of or

might be having trouble with. Once these smaller programs are working

properly, you can build on them.

PicBasic Compiler

11

Try doing things a different way. Sometimes what you are trying to do

looks like it should work but doesn’t, no matter how hard you pound on it.

Usually there is more than one way to skin a program. Try approaching

the problem from a different angle and maybe enlightenment will ensue.

2.8. Coding Style

W riting readable and maintainable programs is an art. There are a few

simple techniques you can follow that may help you become an artist.

2.8.1. Comments

Use lots of comments. Even though it may be perfectly obvious to you

what the code is doing as you write it, someone else looking at the

program (or even yourself when you are someone else later in life) may

not have any idea of what you were trying to achieve. W hile comments

take up space in your BASIC source file, they do not take up any

additional space in the PICmicro MCU so use them freely.

Make the comments tell you something useful about what the program is

doing. A comment like “Set Pin0 to 1" simply explains the syntax of the

language but does nothing to tell you why you have the need to do this.

Something more like “Turn on the Battery Low LED” might be a lot more

useful.

A block of comments before a section of code and at the beginning of the

program can describe what is about to happen in more detail than just the

space remaining after each statement. But don’t include a comment

block instead of individual line comments - use both.

At the beginning of the program describe what the program is intended to

do, who wrote it and when. It may also be useful to list revision

information and dates. Even specifying what each pin is connected to

can be helpful in remembering what hardware this particular program is

designed to run on. If it is intended to be run with a non-standard crystal

or special compiler options, be sure to list those.

2.8.2. Symbols

Use SYMBOL to make the name of a pin or variable something more

coherent than Pin0 or B1. In addition to the liberal use of comments,

PicBasic Compiler

12

descriptive pin and variable names can greatly enhance readability. The

following code fragment demonstrates:

Symbol BattLED = Pin0 ‘Assign Pin0 a more

useful name

Symbol Capacity = B1 ‘Variable B1 will

contain the remaining

battery capacity

If Capacity < 10 Then battlow ‘If battery

capacity is

low, go

indicate it

Goto othercode ‘Else go do something

else

battlow: BattLED = 1 ‘Turn on the Battery Low

LED

Goto othercode ‘Go about other business

2.8.3. Labels

Labels should also be more meaningful than “label1:" or “here:”. Even a

label like “loop:” is more descriptive (though only slightly). Usually the

line or routine you are jumping to does something unique. Try and give

at least a hint of its function with the label, and then follow up with a

comment.

2.8.4. GOTO

Finally, try not to use too many GOTOs. W hile the language is not as

robust as it might be and GOTOs are a necessary evil, try to minimize their

use as much as possible. Try to write your code in logical sections and

not jump around too much. GOSUBs can be helpful in achieving this.

PicBasic Compiler

13

3. Command Line Options

3.1. Usage

The PicBasic Compiler can be invoked from the DOS command line

using the following command format :

PBC Options Filename

Zero or more options can be used to modify the manner in which PBC

compiles the specified file. Options begin with a minus ('- '). The

character following the minus is a letter which selects the option.

Additional characters may follow if the Option requires more

information. Each Option must be separated by a space though no

spaces may occur within an Option. Any Option not recognized by

PBC will generate a fatal error.

The first item not starting with a minus is assumed to be the filename. If

no extension is specified and the -Q option is not invoked, the default

extension .BAS is used. If a path is specified, that directory is searched

for the named file. Regardless of where the source file is found, files

generated by PBC are placed in the current directory.

By default, PBC automatically launches the assembler (PM.EXE) if the

compilation is performed without error. PBC expects to find PM.EXE in

the same directory as PBC.EXE. If the compilation has errors or the -S

option is used, PM is not launched.

If PBC is invoked with no parameters or filename, a brief help screen is

displayed.

PicBasic Compiler

14

3.2. Options

Option Description

C Suppress PBC Extensions

D†
Generates Listing, Symbol Table, and Map File

L†
Generates Listing

OB†
Generates Binary rather than Merged Intel HEX

P## Specify Target (e.g. PIC16F84)

Q Forces use of explicit extension for Source Name

S Skips execution of Assembler when done

† Option is passed directly to PM, if invoked after compilation.

3.2.1. Option -C

In order to given the user options in extending the PBASIC language,

PBC provides some additional capabilities above and beyond the original

specifications for PBASIC. Commands such as PEEK and POKE, inline

assembly, the CALL statement, and additional variables (W7 through W39

and B14 through B79) are language extensions. The -C option disables

these extensions, forcing strict compatibility with original PBASIC on the

program being compiled. Using any of these extensions with -C will

generate errors.

This option is useful mainly for programs developed on the BASIC Stamp

I which may have variable names which conflict with extension keywords.

3.2.2. Option -D

The -D option causes the assembler to generate a symbol table, a listing

and a map file in addition to the normal executable image. See the

PICmicro Macro Assembler's manual on disk for more information on the

-D option.

PicBasic Compiler

15

3.2.3. Option -L

The -L option causes the assembler to generate a listing in addition to

the normal executable image. See the PICmicro Macro Assembler's

manual on disk for more information on the -L option.

Unlike PM, PBC's -L option doesn't allow the user to select an arbitrary

name for the listing file.

3.2.4. Option -OB

The -OB option forces the assembler to generate the program's

executable image as binary rather than the normal Merged Intel HEX.

See the PICmicro Macro Assembler's manual on disk for more

information on the -OB option.

3.2.5. Option -P##

By default, PBC compiles programs for the PIC16F84. PBC

accomplishes this by adding the following line to the beginning of

generated programs:

include "B16F84.INC"

The -P option can be used to select another target from the PICmicro

MCU family. For example:

PBC -p16F628 filename

would generate this line at the start of the program:

include "B16F628.INC"

This would allow the generated program to assemble and run on a

PIC16F628. Check the INC directory for available B*.INC files.

PicBasic Compiler

16

3.2.6. Option -Q

Normally, when no extension is explicitly specified for the source

filename, the default extension .BAS is used. The -Q option prevents this

and forces the programmer to explicitly define the extension (if any) of the

source filename.

3.2.7. Option -S

Normally, when PBC successfully compiles a program, it automatically

launches the assembler. This is done to convert the assembler output of

PBC to an executable image. The -S option prevents this, leaving PCB's

output in the generated .ASM file.

Since -S prevents the assembler from being invoked, options that are

simply passed to the assembler (-D, -L, and -OB) are effectively

overridden by -S.

PicBasic Compiler

17

4. PicBasic Programming

4.1. Comments

All well written programs contain adequate comments, unless you're

Microsoft, in which case they're contained on three CD-ROMs. A PBC

comment starts with either the REM keyword or the single quote (‘). All

following characters on this line are ignored.

4.2. Numeric Constants

PBC allows numeric constants to be defined in the three bases: decimal,

binary and hexadecimal. Binary values are defined using the prefix '% '

and hexadecimal values using the prefix '$ '. Decimal values are the

default and require no prefix.

100 ‘ Decimal Value 100

%100 ‘ Binary Value for Decimal 4

$100 ‘ Hexadecimal Value for Decimal 256

For ease of programming, single characters are converted to their ASCII

equivalents. Character constants must be quoted using double quotes

and must contain only one character (otherwise, they are string

constants).

"A" ‘ ASCII Value for Decimal 65

"d" ‘ ASCII Value for Decimal 100

4.3. String Constants

PBC doesn't provide string handling capabilities, but strings can be used

with some commands. A string contains one or more characters and is

delimited by double quotes. No escape sequences are supported for non-

ASCII characters (although most PBC commands have this handling

built-in).

"Hello" ‘ String (Short for "H","e","l","l","o")

Strings are usually treated as a list of individual character values.

PicBasic Compiler

18

4.4. Identifiers

An identifier is, quite simply, a name. Identifiers are used in PBC for line

labels and symbol names. An identifier is any sequence of letters, digits,

and underscores, although it must not start with a digit. Identifiers are not

case sensitive, thus label, LABEL and Label are all treated as equivalent.

And while labels might be any number of characters in length, PBC only

recognizes the first 32.

4.5. Line Labels

In order to mark statements that the program might wish to reference with

the GOTO or GOSUB commands, PBC uses line labels. Unlike many older

BASICs, PBC doesn't allow line numbers and doesn't require that each

line be labeled. Rather, any PBC line may start with a line label, which is

simply an identifier followed by a colon (:).

here: serout 0,N2400,("Hello, World!",13,10)

goto here

4.6. Variables

A number of variables have been predefined for temporary data storage

in your PicBasic program. Byte-sized variables are named B0, B1, B2

and so forth. W ord-sized variables are named W0, W1, W2 and so forth.

These word-sized variables are made up of two byte-sized variables. For

example, W0 consists of B0 and B1; W1 is made up of B2 and B3 and so

forth. Any of these variables can, in effect, be renamed using the

SYMBOL command to have more meaning within your program.

These variables are actually stored in the PICmicro MCU’s RAM

registers. B0 is stored in the first available RAM location, $0C for the

PIC16F84 and some of the smaller PICmicro MCUs, or $20 for the

PIC16C74 and other larger PICmicro MCUs. Refer to the Microchip

PICmicro MCU data books for the actual location of the start of the RAM

registers for a given PICmicro MCU.

The variables are assigned to RAM sequentially up to and including B21

at which point variables internal to the compiler library subroutines are

assigned. These assignments are done in the file PBH.INC in the INC

subdirectory. You may refer to it for additional information.

PicBasic Compiler

19

For a PICmicro MCU with only 36 bytes of RAM, such as the PIC16C84,

the 22 user variable bytes and the internal library variables use all of the

RAM that is available. For larger PICmicro MCUs like the PIC16F84 with

68 bytes of RAM and the PIC16C74 with 192 bytes of RAM, additional

user variables may be accessed. These variables continue at B22 and

run through B79 (also W11 through W39.) A particular PICmicro MCU

may not have actual RAM at all of these additional locations. If you try to

use a variable with no RAM location, the compiler will not generate an

error, but your program will not do what you expect.

This table lists the highest user variable names that should be used with

each PICmicro MCU:

BASIC Stamp I B13 W6

PIC16C61

B21 W10

PIC16C71

PIC16C710

PIC16C84

PIC16F83

PIC12F629

B47 W23
PIC12F675

PIC16F630

PIC16F676

PIC16C711
B51 W25

PIC16F84

PIC16C554

B63 W31PIC16C620

PIC16C621

All other

supported

PICmicro MCUs

B79 W39

PicBasic Compiler

20

The first two bytes, B0 and B1, may also be used as bit variables: Bit0,

Bit1, ..., Bit15.

Additionally, the variable names Port, Dirs and Pins are predefined.

Pins references PICmicro MCU hardware PORTB. Dirs references the

data direction register for PICmicro MCU hardware PORTB (TRISB). A

Dir of 0 sets its associated Pin to an input and a Dir of 1 sets its

associated Pin to an output. Most instructions set the Pin ’s direction

automatically. Port is a word variable that combines Pins and Dirs.

Like W0, these are overlaid and can be referenced as bits (Pin0, Pin1...

and Dir0, Dir1...).

W hen powered up or reset, Dirs is set to $00 (all pins input) and all

other variables are set to $00. All variable values are unsigned. Thus, bits

have the value 0 or 1, bytes 0 to 255, and words 0 to 65535.

The following table lists the predefined variables:

W ord Variables Byte Variables Bit Variables

W0
B0 Bit0,Bit1,... Bit7

B1 Bit8,Bit9,... Bit15

W1
B2

B3

W2
B4

B5

...
...

...

W39
B78

B79

Port
Pins Pin0,Pin1,... Pin7

Dirs Dir0,Dir1,... Dir7

W hile the use of fixed names might seem to be limiting and lead to ugly

programs, these variables may be given more useful names via the

SYMBOL statement.

PicBasic Compiler

21

4.7. Symbols

In order to make programs more readable, PBC allows the user to define

his own symbols. These symbols may be used to represent constants,

variables or other symbols. They may not be used for line labels. Only

one symbol may be defined per SYMBOL statement.

Symbol Ten = 10 ‘ Symbolic Constants

Symbol Count = W3 ‘ Named Word Variable

Symbol BitVar = BIT0 ‘ Named Bit Variable

Symbol Alias = BitVar ‘ An Alias for BitVar

4.8. Multi-statement Lines

In order to allow more compact programs and logical grouping of related

commands, PBC supports the use of the colon (:) to separate

statements placed on the same line. Thus, the following two examples

are equivalent:

W2 = W0

W0 = W1

W1 = W2

is the same as:

W2 = W0 : W0 = W1 : W1 = W2

This does not, however, change the size of the generated code.

PicBasic Compiler

22

PicBasic Compiler

23

5. PicBasic Statement Reference

BRANCH Computed GOTO (equiv. to ON..GOTO).

BUTTON Debounce and auto-repeat input on specified pin.

CALL Call assembly language subroutine at specified label.†

DEBUG Debugging statement (Ignored by PBC).

EEPROM Define initial contents of on-chip EEPROM.

END Stop execution and enter low power mode.

FOR..NEXT Repeatedly execute statement(s).

GOSUB Call BASIC subroutine at specified label.

GOTO Continue execution at specified label.

HIGH Make pin output high.

I2CIN Read bytes from I C device.2 †

I2COUT Write bytes to I C device.2 †

IF..THEN GOTO if specified condition is true.

INPUT Make pin an input.

[LET] Perform math and assign result to variable.

LOOKDOWN Search table for value.

LOOKUP Fetch value from table.

LOW Make pin output low.

NAP Power down processor for short period of time.

OUTPUT Make pin output.

PAUSE Delay (1mSec resolution).

PEEK Read byte from PICmicro MCU register.†

POKE Write byte to PICmicro MCU register.†

POT Read potentiometer on specified pin.

PULSIN Measure pulse width (10uSec resolution).

PULSOUT Generate pulse (10uSec resolution).

PWM Output pulse width modulated pulse train to pin.

RANDOM Generate pseudo-random number.

READ Read byte from on-chip EEPROM.

RETURN Continue execution at statement following GOSUB.

REVERSE Make output pin an input or an input pin an output.

SERIN Asynchronous serial input (8N1).

SEROUT Asynchronous serial output (8N1).

SLEEP Power down processor.

SOUND Generate tone or white-noise on specified pin.

TOGGLE Make pin output and toggle state.

WRITE Write byte to on-chip EEPROM.

† PicBasic language extension not found in PBASIC.

PicBasic Compiler

24

5.1. BRANCH

BRANCH Offset, (Label{, Label})

Uses Offset to index into the list of labels. Execution resumes at the

indexed label. For example, if Offset is zero, execution resumes at the

first label specified in the list. If Offset is one, at the second label. And

so on. If Offset is equal to or greater than the number of labels, no

action is taken and execution resumes with the following statement.

Branch B10,(label1,label2,label3) ‘If B10=0

goto label1;

if B10=1

goto label2;

if B10=2

goto label3

PicBasic Compiler

25

5.2. BUTTON

BUTTON Pin, Down, Delay, Rate, Var, Action, Label

Read input, perform debounce and auto-repeat on Pin.

Pin Pin number (0..7).

Down State of pin when button is pressed (0..1).

Delay Cycle count before auto-repeat starts (0..255). If 0, no debounce

or auto-repeat is performed. If 255, debounce, but no auto-

repeat, is performed.

Rate Auto-repeat rate (0..255).

Var Byte variable used for delay/repeat countdown. Should be

initialized to 0 prior to use.

ActionState of button to perform GOTO (0 if not pressed, 1 if pressed).

Label Execution resumes at this label if Action is true.

Button 2,0,100,10,B0,0,skip ‘Check for button

pressed on Pin2

and goto skip if

not

PicBasic Compiler

26

5.3. CALL

CALL Label

Executes the assembly language subroutine named Label. CALL is a

PicBasic Compiler statement and is not supported on the BASIC Stamp.

See the section on assembly language for more information.

Call pass ‘Call assembly language subroutine

named pass

PicBasic Compiler

27

5.4. DEBUG

PBC does not support the PBASIC DEBUG statement. PBC will, however,

parse DEBUG statements correctly and report syntax errors.

PicBasic Compiler

28

5.5. EEPROM

EEPROM { Location, } (Constant{, Constant})

Stores constants in consecutive bytes in on-chip EEPROM. If the optional

location value is omitted, the first EEPROM statement starts storing at

address 0 and subsequent statements store at the following locations. If

the location value is specified, it specifies the location where these

values are stored.

Constant can be a numeric constant or a string constant. Only the least

significant byte of numeric values are stored. Strings are stored as

consecutive bytes of ASCII values. No length or terminator is added

automatically.

EEPROM only works with PICmicro MCUs with on-chip EEPROM such as

the PIC16F84 and PIC16F628. The data is stored in the EEPROM space

at the time the PICmicro MCU is programmed, not each time the program

is run.

Eeprom 5,(10,20,30) ‘Store 10, 20 and 30

starting at EEPROM

location 5

PicBasic Compiler

29

5.6. END

END

Stops program execution and enters the low power mode by executing

continuous NAP commands.

End

PicBasic Compiler

30

5.7. FOR..NEXT

FOR Index = Start TO End { STEP { - } Inc }

{ Body }

NEXT { Index }

The FOR..NEXT loop allows PBC programs to executes a number of

statements (the Body) some number of times using a variable as an

index. Due to its complexity and versatility, FOR..NEXT is best described

step by step:

1) The value of Start is assigned to the index variable, Index.

Index can be a variable of any type.

2) The Body is executed. The Body is optional and can be omitted

(perhaps for a delay loop).

3) The value of Inc is added to (or subtracted from) Index. If no

STEP clause is defined, Index is incremented by one.

4) If Index is still between Start and End (inclusive), execution

resumes at Step 2.

All loop calculations are performed using 16-bit arithmetic.

For B6 = 1 to 10 ‘Count from 1 to 10

Serout 0,N2400,(#B6,” “) ‘Send each

number to

Pin0

serially

Next B6 ‘Go back to top of For

and do next count

Serout 0,N2400,(10) ‘Send a linefeed

PicBasic Compiler

31

5.8. GOSUB

GOSUB Label

Executes the statements at Label. Unlike GOTO, when the RETURN

statement is reached, execution resumes with the statement following the

GOSUB statement. The code between Label and the RETURN statement

is called a subroutine.

Subroutines can be nested. In other words, it is possible for a subroutine

to call other subroutines. Such nesting should be restricted to no more

than four levels deep.

Gosub beep ‘Execute subroutine named beep

...

beep: High 0 ‘Turn on LED connected to Pin0

Sound 1,(80,10) ‘Beep speaker connected to

Pin1

Low 0 ‘Turn off LED connected to Pin0

Return ‘Go back to main routine that called

us

PicBasic Compiler

32

5.9. GOTO

GOTO Label

Program execution continues with the statements at Label.

Goto send ‘Jump to statement labeled send

...

send: Serout 0,N2400,(“Hi”) ‘Send “Hi” out Pin0

serially

PicBasic Compiler

33

5.10. HIGH

HIGH Pin

Makes the specified pin output high. The pin is automatically made an

output pin. Only the pin number itself, i.e. 0 to 7, is specified (i.e. NOT
Pin0.)

High 0 ‘Make Pin0 an output and set it high

(~5 volts)

PicBasic Compiler

34

5.11. I2CIN

I2CIN Control, Address, Var{, Var}

Sends Control and Address out the I C clock and data lines and puts2

the byte(s) received into Var.

I2CIN and I2COUT can be used to read and write data to a serial

EEPROM with a 2-wire I C interface such as the Microchip 24LC01B,2

24LC02B and similar devices. This allows data to be stored in non-

volatile memory so that it can be maintained even after the power is

turned off. These commands operate in the I C master byte read and2

write modes and may also be used to talk to other devices with an I C2

interface like temperature sensors and A/D converters.

The lower 7 bits of the Control byte contain the control code along with

chip select or additional address information, depending on the particular

device. The high order bit is a flag indicating whether the following

Address is to be sent as an 8 bit or 16 bit address. If this flag is low, the

Address is sent as 8 bits. The control code for a serial EEPROM is

usually %1010.

For example, when communicating with a 24LC01B, the Address

required is 8 bits, the control code is %1010 and the chip select is unused

so the Control byte would be %01010000 or $50. Formats of Control

bytes for some of the different parts follow:

PicBasic Compiler

35

Device Capacity Control Address size

24LC01B 128 bytes %01010xxx 8 bits

24LC02B 256 bytes %01010xxx 8 bits

24LC04B 512 bytes %01010xxb 8 bits

24LC08B 1K bytes %01010xbb 8 bits

24LC16B 2K bytes %01010bbb 8 bits

24LC32B 4K bytes %11010ddd 16 bits

24LC65 8K bytes %11010ddd 16 bits

bbb = block select (high order address) bits

ddd = device select bits

xxx = don’t care

See the Microchip Non-Volatile Memory Products Data Book for more

information on these and other devices that may be used with the I2CIN

and I2COUT commands.

The I C data and clock lines are predefined in the main library as PortA.02

and PortA.1 respectively. This gets them out of the way of the PortB pins

and makes it unnecessary to define them in each I2CIN or I2COUT

statement. They may be assigned to different pins by simply changing

the equates at the beginning of the I C routines in the file PBL.INC.2

The I C data line should be pulled up to Vcc with a 4.7K resistor per the2

following schematic as it is run in a bi-directional open-collector manner.

PicBasic Compiler

36

Symbol con = %01010000

Symbol addr = B5

addr = 17 ‘ Set address to 17

I2Cin con,addr,B2 ‘ Read data at address

17 into B2

PicBasic Compiler

37

5.12. I2COUT

I2COUT Control, Address, (Value{, Value })

I2COUT sends Control and Address out the I C clock and data lines2

followed by Value.

W hen writing to a serial EEPROM it is necessary to wait 10ms (device

dependent) for the write to complete before attempting communication

with the device again. If a subsequent I2CIN or I2COUT is attempted

before the write is complete, the access will be ignored.

W hile a single I2COUT statement may be used to write multiple bytes at

once, doing so would violate the above write timing requirement for serial

EEPROMs. The multiple byte write feature may be useful with I C2

devices other than serial EEPROMs that don’t have to wait between

writes.

See the I2CIN command above for the rest of the story.

Symbol con = %01010000

Symbol addr = B5

addr = 17 ‘ Set address to 17

I2Cout con,addr,(56) ‘ Send the byte 56

to address 17

Pause 10 ‘ Wait 10ms for write to

complete

addr = 127 ‘ Set address to 127

I2Cout con,addr,(B12) ‘ Send the byte in

B12 to address 127

Pause 10 ‘ Wait 10ms for write to

complete

PicBasic Compiler

38

5.13. IF..THEN

IF Comp { AND/OR Comp } THEN Label

Performs one or more comparisons. Each Comp term can relate a

variable to a constant or other variable and must be in the following form:

Var (< | <= | = | <> | >= | >) Value

All comparisons are unsigned since PBC only supports unsigned types. A

variable must occur on the left.

The THEN in an IF..THEN is essentially a GOTO. If the condition is true,

the program will GOTO the label after the THEN. If the condition evaluates

to false, the program will continue at the next line after the IF..THEN.

Another statement may not be placed after the THEN, it must be a label.

If Pin0 = 0 Then pushd ‘If button connected to

Pin0 is pushed (0), jump

to label pushd

If B0 >= 40 Then old ‘If the value in

variable B0 is greater

than or equal to 40,

jump to old

PicBasic Compiler

39

5.14. INPUT

INPUT Pin

Makes the specified pin an input. Only the pin number itself, i.e. 0 to 7, is

specified (i.e. NOT Pin0.)

Input 1 ‘Make Pin1 an input

PicBasic Compiler

40

5.15. {LET}

{ LET } Var = { - } Value { Op Value }

Assigns a value to a variable. The value may be a constant, the value of

another variable or the result of one or more binary operations. The

operations are performed strictly left to right and all operations are

performed with 16-bit precision. Unary negation may only be performed

on the first value. The operators supported are:

 + Addition

- Subtraction

* Multiplication

** MSB of Multiplication

/ Division

// Remainder

MIN Minimum

MAX Maximum

& Bitwise AND

| Bitwise OR

^ Bitwise XOR

&/ Bitwise AND NOT

|/ Bitwise OR NOT

^/ Bitwise XOR NOT

Let B0 = 27 ‘Assign variable B0 the value 27

(“Let” is optional)

B1 = B0 / 2 ‘Assign variable B1 B0's value

shifted right one bit (divided by 2)

Pin2 = 0 ‘Make Pin2 low (does not set Pin2 to

an output)

PicBasic Compiler

41

5.15.1. Multiplication

PBC performs 16x16 multiplication. The '* ' operator returns the lower 16

bits of the 32-bit result. This is the typical multiplication found in most

programming languages. The '** ' operator returns the upper 16 bits of

the 32-bit result. These two operators can be used in conjunction to

perform 16x16 multiplication to produce 32-bit results.

W1 = W0 * 1000 ‘Multiply value in W0 by 1000

and place the result in W1

W2 = W1 ** W0 ‘Multiply W1 by W0 and place

the high order 16 bits (which

may be 0) in W2

5.15.2. Bitwise NOT Operators

Along with the normal bitwise binary operators (AND, OR, XOR), PBC also

supports NOT versions. These versions perform a bitwise complement on

the right-hand value prior to performing the operation.

B3 = B3 &/ %11110000 ‘Same as B3 = B3 &

%00001111

PicBasic Compiler

42

5.16. LOOKDOWN

LOOKDOWN Search, (Constant{, Constant}), Var

The LOOKDOWN statement searches a list of Constant values for the

presence of the Search value. If found, the index of the matching

constant is stored in Var. Thus, if the value is found first in the list, Var is

set to zero. If second in the list, Var is set to one. And so on. If not found,

no action is taken and Var remains unchanged.

The constant list can be a mixture of numeric and string constants. Each

character in a string is treated as a separate constant with the character's

ASCII value.

Serin 1,N2400,B0 ‘Get hexadecimal

character from Pin1

serially

Lookdown B0,(“0123456789ABCDEF”),B1 ‘Convert

hexadecimal

character in

B0 to

decimal

value B1

Serout 0,N2400,(#B1) ‘Send decimal value to

Pin0 serially

PicBasic Compiler

43

5.17. LOOKUP

LOOKUP Index, (Constant{, Constant}), Var

The LOOKUP statement can be used to retrieve values from a table of

constants. If Index is zero, Var is set to the value of the first Constant.

If Index is one, Var is set to the value of the second Constant. And so

on. If Index is greater than or equal to the number of entries in the

constant list, no action is taken and Var remains unchanged.

The constant list can be a mixture of numeric and string constants. Each

character in a string is treated as a separate constant equal to the

character's ASCII value.

For B0 = 0 to 5 ‘Count from 0 to 5

Lookup B0,(“Hello!”),B1 ‘Get character

number B0 from

string to variable

B1

Serout 0,N2400,(B1) ‘Send character in

B1 to Pin0

serially

Next B0 ‘Do next character

PicBasic Compiler

44

5.18. LOW

LOW Pin

Makes the specified pin output low. The pin is automatically made an

output pin. Only the pin number itself, i.e. 0 to 7, is specified (i.e. NOT

Pin0.)

Low 0 ‘Make Pin0 an output and set it low (0

volts)

PicBasic Compiler

45

5.19. NAP

NAP Period

Places PICmicro MCU in low power mode for short periods of time.

During this NAP, power consumption is reduced to minimum. The listed

periods are only approximate because the timing is derived from the

W atchdog Timer which is R/C driven and varies greatly from chip to chip

and over temperature:

Period Delay (Approx.)

0 18 mSec

1 36 mSec

2 72 mSec

3 144 mSec

4 288 mSec

5 576 mSec

6 1.152 Sec

7 2.304 Sec

Nap 7 ‘Low power pause for about 2.3 seconds

PicBasic Compiler

46

5.20. OUTPUT

OUTPUT Pin

Make the specified pin an output. Only the pin number itself, i.e. 0 to 7, is

specified (i.e. NOT Pin0.)

Output 0 ‘Make Pin0 an output

PicBasic Compiler

47

5.21. PAUSE

PAUSE Period

Pauses the program for Period milliseconds. Period is 16-bits, so

delays can be up to 65,535 milliseconds (a little over a minute). Unlike

the other delay functions (NAP and SLEEP), PAUSE doesn't put the

PICmicro MCU into low power mode. Thus, PAUSE consumes more

power but is also more accurate. It has the same accuracy as the system

clock.

Pause 1000 ‘Delay for 1 second

PicBasic Compiler

48

5.22. PEEK

PEEK Address, Var

Reads the PICmicro MCU register at the specified Address and stores

the result in Var. Special PICmicro MCU features such as A/D converters

and additional I/O ports may be read using PEEK. PEEK is a PicBasic

Compiler statement and is not supported on the BASIC Stamp.

PEEK and POKE allow direct access to all of the registers on a PICmicro

MCU including PORTA, PORTB, PORTC, PORTD, PORTE and their

associated data direction (TRIS) registers. PEEK and POKE operate on

all of the bits, i.e. the entire byte, of the particular register at once. W hen

you POKE data to PORTA, the entire port is updated, not just one

individual bit.

If substantial individual bit manipulation is required, it is recommended

that those I/O functions be assigned to a pin on PORTB and less

demanding byte access be left to the other I/O ports. Alternatively

variable B0 allows manipulation of its individual bits. It can first be set up

as desired and then POKEd to PORTA, for example, to ease bit

manipulation. Following are examples of this technique. This technique

may be used with any PICmicro MCU register.

‘ Read PortA bits using intermediate variable B0

Symbol PortA = 5 ‘Define PortA register

location

Symbol TrisA = $85 ‘Define PortA direction

register location

Poke TrisA,255 ‘Make all PortA pins

inputs

loop: Peek PortA,B0 ‘Get current PortA pin

states to variable B0

If Bit0 = 1 Then zerohigh ‘Jump to

label

zerohigh if

Bit0 (RA0)

is high

PicBasic Compiler

49

If Bit1 = 0 Then onelow ‘Jump to label

onelow if Bit1

(RA1) is low

Goto loop ‘Go check some more

zerohigh: High 0 ‘Set Pin0 (RB0) high

Goto loop ‘Go do some more

onelow: Low 1 ‘Set Pin1 (RB1) low

Goto loop ‘Go do some more

End

‘ Set PortA bits using intermediate variable B0

Symbol PortA = 5 ‘Define PortA register

location

Symbol TrisA = $85 ‘Define PortA direction

register location

Poke TrisA,0 ‘Make all PortA pins

outputs

Peek PortA,B0 ‘Get current PortA pin

states to variable B0

Bit1 = 1 ‘Set Bit1 in B0 which will

become PortA pin 1 high

Bit3 = 0 ‘Set Bit3 in B0 which will

become PortA pin 3 low

‘Bit0, 2 and 4 will remain

unchanged

Poke PortA,B0 ‘Send the new byte to

PortA to complete the

change

End

PicBasic Compiler

50

5.23. POKE

POKE Address, Value

 W rites Value to the PICmicro MCU register at the specified Address.

Special PICmicro MCU features such as A/D converters and additional

I/O ports may be written using POKE. POKE is a PicBasic Compiler

statement and is not supported on the BASIC Stamp. (See PEEK for

more information.)

Poke $85,0 ‘Write 0 to register hexadecimal 85

(Sets PortA to all outputs)

PicBasic Compiler

51

5.24. POT

POT Pin, Scale, Var

Reads a potentiometer (or some other resistive device) on Pin. Pins are

numbered 0 to 7.

The resistance is measured by timing the discharge of a capacitor

through the resistor (typically 5K to 50K). Scale is used to adjust for

varying R/C constants. For larger R/C constants, Scale should be set

low (a minimum value of one). For smaller R/C constants, Scale should

be set to its maximum value (255). If Scale is set correctly, Var should

be zero near minimum resistance and 255 near maximum resistance.

Scale must be determined experimentally. To do so, set the device

under measure to maximum resistance and read it with Scale set to

127. Adjust Scale until the Pot command returns 254. If 255, decrease

the scale. If 253 or lower, increase the scale. (NOTE: This is the same

type of process performed by the Alt-P option of the BS1 environment).

Use the following code to automate the process. Make sure that you set

the pot to maximum resistance.

For B1 = 1 To 255

POT 0,B1,B0

If B0 > 253 Then calibrated

Next B1

Serout 2,0,("Increase R or C.",10,13)

End

calibrated:

Serout 2,0,("Scale= ",#B1,10,13)

PicBasic Compiler

52

5.25. PULSIN

PULSIN Pin, State, Var

Measures pulse width in 10 uSec units on Pin. If State is zero, the

width of a low pulse is measured. If State is one, the width of a high

pulse is measured. The measured width is placed in Var, which can take

measurements from 10 uSec to 655,350 uSec for 16-bit variables. If the

pulse edge never happens or the width of the pulse is too great to

measure, Var is set to zero. If an 8-bit variable is used, only the LSB of

the 16-bit measurement is used. Pins are numbered from 0 to 7.

Pulsin 4,1,W3 ‘Measure high pulse on Pin4

and place width * 10uSec in W3

PicBasic Compiler

53

5.26. PULSOUT

PULSOUT Pin, Period

Generates a pulse on Pin of specified Period in 10 uSec units. Since

Period is 16-bits, pulses of up to 655,350 uSec can be generated. The

pulse is generated by toggling the pin twice, thus the initial state of the pin

determines the polarity of the pulse. The pin is automatically made an

output pin. Pins are number 0 to 7.

Pulsout 5,100 ‘Send a pulse 1mSec long to

Pin5

PicBasic Compiler

54

5.27. PWM

PWM Pin, Duty, Cycle

Outputs PW M pulse train on Pin. Each cycle of PW M consists of 256

steps. The Duty cycle for each PW M cycle ranges from 0 (0%) to 255

(100%). This PW M cycle is repeated Cycle times. Pins are numbered

from 0 to 7.

The pin is made an output just prior to pulse generation and reverts to an

input after generation stops. This allows a simple R/C circuit to be used

as a simple D/A converter:

Pwm 7,127,100 ‘Send a 50% duty cycle PWM

signal out Pin7 for 100 cycles

PicBasic Compiler

55

5.28. RANDOM

RANDOM Var

Performs one iteration of pseudo-randomization on Var. Var must be a

16-bit variable. (NOTE: PBC does not support the use of the PORT

variable with the RANDOM statement). The pseudo-random algorithm used

has a walking length of 65535 (only zero is not produced).

Random W4 ‘Get a random number to W4

PicBasic Compiler

56

5.29. READ

READ Address, Var

Reads the EEPROM byte at the specified Address and stores the result

in Var. If Address is 255 and the device is a PIC16C84, 16F627, 628,

83 or 84, Var is assigned the number of EEPROM bytes available.

Address 255 is not valid for 16F87x devices. This instruction may only

be used with a PICmicro MCU that has an on-chip EEPROM data area

such as the PIC16C84, 16F62x, 8x and 87x.

Read 5,B2 ‘Put the value at EEPROM location 5

into B2

PicBasic Compiler

57

5.30. RETURN

RETURN

Returns from subroutine. RETURN resumes execution at the statement

following the GOSUB which called the subroutine.

Gosub sub1 ‘Go to subroutine labeled sub1

...

sub1: Serout 0,N2400,(“Lunch”) ‘Send “Lunch” out

Pin0 serially

Return ‘Return to main program after

Gosub

PicBasic Compiler

58

5.31. REVERSE

REVERSE Pin

If the pin is an input, it is made an output. If the pin is an output, it is made

an input. Pins are numbered 0 to 7.

Output 4 ‘Make Pin4 an output

Reverse 4 ‘Change Pin4 to an input

PicBasic Compiler

59

5.32. SERIN

SERIN Pin, Mode,{ (Qual{, Qual}), } Item{, Item}

Receives one or more items on Pin in standard asynchronous format

using 8 data bits, no parity and one stop bit. Mode is one of the following:

Symbol Value Baud Rate Mode

T2400 0 2400

TTL True
T1200 1 1200

T9600 2 9600†

T300 3 300

N2400 4 2400

TTL Inverted
N1200 5 1200

N9600 6 9600†

N300 7 300

† 9600 baud is an addition to the PicBasic Compiler and is not available

on the BASIC Stamp I.

The list of data items to be received may be preceded by one or more

qualifiers enclosed within parenthesizes. SERIN must receive these bytes

in exact order before receiving the data items. If any byte received does

not match the next byte in the qualifier sequence, the qualification

process resets (i.e. the next received byte is compared to the first item in

the qualifier list). A Qualifier can be a constant, variable or a string

constant. Each character of a string is treated as an individual qualifier.

Once the qualifiers are satisfied, SERIN begins storing data in the

variables associated with each Item. If the variable name is used alone,

the value of the received ASCII character is stored in the variable. If

PicBasic Compiler

60

variable is preceded by a pound sign (#), then SERIN converts a

decimal value in ASCII and stores the result in that variable. All non-digits

received prior to the first digit of the decimal value are ignored and

discarded. The non-digit character which terminates the decimal value is

also discarded.

W hile single-chip RS-232 level converters are common and inexpensive,

the excellent I/O specifications of the PICmicro MCU allow most

applications to run without level converters. Rather, inverted input

(N9600..N300) can be used is conjunction with a current limiting resistor.

Serin 1,N2400,(“A”),B0 ‘Wait until the

character “A” is

received serially on

Pin1 and put next

character into B0

PicBasic Compiler

61

5.33. SEROUT

SEROUT Pin, Mode, (Item{, Item})

Sends one or more items to Pin is standard asynchronous format using

8 data bits, no parity and one stop. Mode is one of the following:

Symbol Value Baud Rate Mode

T2400 0 2400

TTL True
T1200 1 1200

T9600 2 9600†

T300 3 300

N2400 4 2400

TTL Inverted
N1200 5 1200

N9600 6 9600†

N300 7 300

OT2400 8 2400

Open Drain
OT1200 9 1200

OT9600 10 9600†

OT300 11 300

ON2400 12 2400

Open Source
ON1200 13 1200

ON9600 14 9600†

ON300 15 300

† 9600 baud is an addition to the PicBasic Compiler and is not available

on the BASIC Stamp I.

SEROUT supports three different data types which may be mixed and

matched freely within a single SEROUT statement.

1) A string constant is output as a literal string of characters.

2) A numeric value (either a variable or a constant) will send the

corresponding ASCII character. Most notably, 13 is carriage

return and 10 is line feed.

3) A numeric value preceded by a pound sign (#) will send the

PicBasic Compiler

62

ASCII representation of its decimal value. For example, if W0 =

123, then #W0 (or #123) will send '1 ', '2 ', '3 '.

W hile single-chip RS-232 level converters are common and inexpensive,

thanks to current RS-232 implementation and the excellent I/O

specifications of the PICmicro MCU, most applications don't require level

converters. Rather, inverted TTL (N300..N9600) can be used. A current

limiting resistor is suggested (RS-232 is suppose to be short-tolerant).

Serout 0,N2400,(#B0,10) ‘Send the ASCII value of

B0 followed by a

linefeed out Pin0

serially

PicBasic Compiler

63

5.34. SLEEP

SLEEP Period

Places PICmicro MCU in low power mode for Period seconds. Period

is 16-bits, so delays can be up to 65,535 seconds (just over 18 hours).

SLEEP uses the W atchdog Timer to periodically wake up to see if the

Period has expired so its resolution is the maximum timeout for the

W atchdog Timer, 2.3 seconds.

Sleep 60 ‘Sleep for 1 minute

PicBasic Compiler

64

5.35. SOUND

SOUND Pin, (Note, Duration{, Note, Duration})

Generates tone and/or white noise on the specified Pin. Note 0 is

silence. Notes 1-127 are tones. Notes 128-255 are white noise. Tones

and white noises are in ascending order (i.e. 1 and 128 are the lowest

frequencies, 127 and 255 are the highest). Duration is 0-255 and

determines how long the Note is played. Note and Duration needn't

be constants. Pins are numbered 0 to 7.

SOUND outputs TTL-level square waves. Thanks to the excellent I/O

characteristics of the PICmicro MCU, a speaker can be driven through a

capacitor. Piezo speakers can be driven directly.

Sound 7,(100,10,50,10) ‘Send 2 sounds

consecutively to Pin7

PicBasic Compiler

65

5.36. TOGGLE

TOGGLE Pin

Inverts the state of the specified pin. The pin is automatically made an

output pin. Pins are numbered 0 to 7.

Low 0 ‘Start Pin0 as low

Toggle 0 ‘Change state of Pin0 to high

PicBasic Compiler

66

5.37. WRITE

WRITE Address, Value

W rites byte Value to the EEPROM at the specified Address. This

instruction may only be used with a PICmicro MCU that has an on-chip

EEPROM data area such as the PIC16C84, 16F62x, 8x and 87x.

Write 5,B0 ‘Send value of B0 to EEPROM location

5

PicBasic Compiler

67

6. Structure of a Compiled Program

PBC is designed to be easy to use. Programs can be compiled and run

with little thought to PBC's internal workings. Some people, however, only

have confidence in a product when they understand its internal workings.

Others are just plain curious.

This section is for them. It describes the output generated by PBC and

gives some idea of exactly what is going on.

6.1. Target (PICmicro MCU) Specific Header (B##.INC)

The first thing a PBC generated program does is define the symbol PBCX

to be 1 if PBC extensions are enabled, or 0 if PBC extensions are

disabled (-C option). This allows the library to selectively define additional

variables and functions needed for PBC extensions.

Next, a target specific header file is included. By default, this file is

B16F84.INC, although this can be changed using the -P option.

This header is, in turn, responsible for including (via MACLIB) the

processor specific header supplied with PM. The PM header, in turn,

defines all the processor specific information needed to assemble

programs for that PICmicro MCU.

The B##.INC header then uses the DEVICE pseudo-op to set the

processor's fuses. For NAP and SLEEP to work, the W atchdog Timer

must be enabled. The oscillator must also be set appropriately. Other

fuse positions can be set at the user's discretion. See the Microchip data

sheet for the particular device for information about the configuration

fuses.

The DATA pseudo-op is next used to select the data segment as the

current segment. It should also place the load pointer at the base of

usable RAM in the target processor. In the case of a PIC16Cxxx, this will

either be 0Ch or 20h. Selecting one of these addresses is important

because PBC's internal bit numbering scheme relies on selecting one of

these two addresses.

PicBasic Compiler

68

The header should then execute NLIST to disable listing. This hides

tedious, uninteresting and unchanging implementation details in

PBH.INC.

Then PBH.INC is included. If desired, macro and bit addresses defined in

PBH.INC can be overridden by being defined here.

W hen PBH.INC is done, listing is enabled and the code segment is

selected. At this point, any target specific library routines should be

added. Since these routines must be assembled before the user's code is

assembled, they must assemble unconditionally (unlike the normal library

routines). Hence, such target specific routines should be as brief as

possible.

The last thing left to do is define the main label, which is where the user's

code will start execution.

6.2. PBH.INC

PBH.INC first defines user variables in the data segment. This is followed

by the definition of working and temporary registers used by PBC's

libraries. User variables can occupy up to 80 bytes of memory unless the

-C option is used, in which case only 14 bytes are used. W orking

variables and temporary registers occupy another 13-16 bytes.

PINx, DIRx, and other bit locations are numbered. All bits of interest

(PORT, TRIS, and the bits of W0) need to be spanned by an 8-bit value in

order to take best advantage of the W register. Since normal PICmicro

MCU numbering requires 11 bits, a custom system was developed. Its

details are uninteresting, but it is important to understand that PBC bit

numbers need to be converted before use and cannot be used verbatim

in an assembly language subroutine.

A number of macros are defined. Some are simple utility macros. Some

perform the bit mapping mentioned earlier. And some macros access the

PINS and DIRS registers. These are particularly interesting since they

can be overridden by definitions in B##.INC.

The code segment is then selected and startup code is generated. This is

followed by a set mandatory library routines. The FW@Pin and FW@Mask

PicBasic Compiler

69

functions are responsible for the run time mapping of PBC bit numbers

onto the FSR and W registers.

6.3. PBC Generated Code

B##.INC and PBH.INC have now laid all the ground work for the

compiled code. The code segment is the current segment and the load

pointer is set to main, the place where the user's code begins execution.

After the user's code is assembled, PBC's library PBL.INC is included.

6.4. PBL.INC

PBL.INC contains library support routines. Most of the routines

corresponding to PBC statements end in the '@ ' character. Block

comments indicate each routine's functionality. Routines are ordered

such that every routine in the library is only dependent on routines which

occur later in the library. Each routine is conditionally assembled only if it

is explicitly referenced (via the REF operator). In this way, only needed

library routines are actually assembled.

The first module in PBL.INC is end@. Unlike other modules in the library,

end@ is always assembled. This simulates the END statement implicitly at

the end of each PBC program.

PicBasic Compiler

70

PicBasic Compiler

71

7. Other PicBasic Considerations

7.1. How Fast is Fast Enough?

The PicBasic Compiler generates programs intended to be run on a

PICmicro MCU with a 4MHz crystal or ceramic resonator. All of the time

sensitive instructions assume a 1 microsecond instruction time for their

delays. This allows a Pause 1000, for example, to wait 1 second and

the SERIN and SEROUT command’s baud rates to be accurate.

There are times, however, when it would be useful to run the PICmicro

MCU at a frequency other than 4MHz. Even though the compiled

programs move along at a pretty good clip, it might be nice to run them

even faster. Or maybe it is desirable to do serial input or output at 19,200

baud rather than the current top speed of 9600 baud.

PicBasic Compiler programs may be run at clock frequencies other than

4MHz if you pay attention to what happens to the time dependent

instructions. If you wish to run the serial bus at 19,200 as described

above, you would simply clock the PICmicro MCU with an 8MHz crystal

rather than a 4MHz crystal. This, in effect, makes everything run twice as

fast, including the SERIN and SEROUT commands. If you tell SERIN or

SEROUT to run at 9600 baud, the doubling of the crystal speed will double

the actual baud rate to 19,200 baud.

However, keep in mind commands such as PAUSE and SOUND will also

run twice as fast. The Pause 1000 mentioned above would only wait

half a second with an 8MHz crystal before allowing program execution to

continue.

This technique may also be used to enhance the resolution of the

PULSIN and PULSOUT instructions. At 4MHz these instructions operate

with a 10 microsecond resolution. If a 20MHz crystal is used, the

resolution is increased 5 times to 2 microseconds. There is a tradeoff

however. The pulse width is still measured to a 16-bit word variable.

W ith a 2 microsecond resolution, the maximum measurable pulse width

would be 131,070 microseconds.

Going the other direction and running with a 32.768Khz oscillator is

problematic. It may be desirable to attempt this for reduced power

consumption reasons and it will work to some extent. The SERIN and

PicBasic Compiler

72

SEROUT commands will be unusable and the W atchdog Timer may cause

the program to restart periodically. Experiment to find out if your

particular application is possible at this clock speed. It doesn’t hurt to try.

The time dependent instructions are I2CIN, I2COUT, PAUSE, POT,

PULSIN, PULSOUT, PWM, SERIN, SEROUT, SLEEP, and SOUND. It is

possible to modify the actual library routines to maintain proper

instruction timing at clock speeds other than 4MHz, although with some

functions a fair bit of effort may be required.

7.2. Assembly Language

Assembly language routines can be a useful adjunct to a PicBasic

Compiler program. W hile in general most tasks can be done completely

in PicBasic, there are times when it might be necessary to do a particular

task faster, or using a smaller amount of code space, or just differently

than the compiler does it. At those times it is useful to have the

capabilities of an in-line assembler.

It can be beneficial to write most of a program quickly using the PicBasic

language and then sprinkle in a few lines of assembly code to increase

the functionality. This additional code may be inserted directly into the

PicBasic program, added to the main library, or included as another file.

7.2.1. Programming in Assembly Language

PBC programs may contain in-line assembly; one or more lines of

assembly code preceded by the ASM keyword and ended by the ENDASM

keyword. Both keywords appear on their lines alone.

The lines of assembly are copied verbatim to the assembly output file.

This allows the PBC program to use all of the facilities of PM, the

PICmicro Macro Assembler. This also, however, requires that the

programmer have some familiarity with the PBC libraries. PBC’s

notational conventions are similar to other commercial compilers and

should come as no shock to programmers experienced enough to

attempt in-line assembly.

All symbol names defined in a PBC program are similarly defined in

assembly, but with the name preceded with an underscore (_). This

allows access to user variables, constants, and even labeled locations, in

PicBasic Compiler

73

assembly. Similarly, system variable (such as W0) names are also

preceded by underscores (such as _W0).

Thus, any name defined in assembly starting with an underscore has the

possibility of conflicting with a PBC generated symbol. If conflict is

avoided, can these underscored assembly values be accessed from

PBC? No. Remember, the underscored names generated by PBC are

only shadows of the actual information defined in the compiler. Since in-

line assembly is copied directly to the output file and not processed by

the compiler, the compiler not only lacks any type or value information

about assembly symbols, it is completely unaware that they exist. If

variables are to be shared between assembly and PBC, either use

predefined system variables or define the variables in PBC.

Just as underscored symbols have possible conflicts, so do symbols not

starting with underscores. The problem is internal library variables.

Luckily, most library variables contain an '@ ' or make reference to one of

the working registers (such as R0). Avoiding such names should be

reduce problems. If you should have a name collision, the compiler will

report the duplicate definitions as an error.

7.2.2. Assembly Language Examples

To write a byte to PORTA in PicBasic you could simply:

Poke 5,B0 ‘Send whatever is in variable

B0 to PortA (register 5)

But for code speed and size reasons you might write:

asm ‘The following code is written

in assembler

clrb RP0 ;Make sure we’re pointing to

the proper register page

mov 5,_B0 ;Send whatever is in variable

B0 to PortA (register 5)

endasm

This code takes 3 words of code space and runs in 3 microseconds (with

a 4MHz oscillator) as opposed to the PicBasic statement which takes up

a little more code space but takes several microseconds longer to

PicBasic Compiler

74

execute. (The clrb RP0 isn’t strictly necessary. The compiler normally

clears that bit before returning from a library routine. But better safe...)

Note that in the assembly example above the variable B0 was preceded

by an underscore (_). By convention, PicBasic labels and variables that

are accessed in assembler must be preceded by an underscore. This is

to keep lower level label assignments from interfering with PicBasic

labels and variables.

You might also note that the comment delimiter changed from the single

quote (‘) in PicBasic to the semi-colon (;) after the ASM command.

Unfortunately, each language’s syntax has a different requirement for this

character.

Larger assembly language routines may be included in your program or

in a separate file. If a routine is used by only one particular PicBasic

program, it would make sense to include the assembler code within the

PicBasic file. This routine can then be accessed using the CALL

command.

‘PicBasic example program with embedded assembly

language subroutines

loop: For B0 = 0 To 255 ‘Count up B0 in a

For..Next loop

Call shiftout ‘Call assembly routine

to shift B0 out PortA

Next B0 ‘Do next count

Call shiftin ‘Shift in a byte from

PortA to B0

Serout 0,N2400,(B0) ‘Send the byte out

serially on Pin0

Goto loop ‘Go do it all again

End

asm ‘Assembly language code

follows

_shiftout mov T0,#8 ;Setup temporary variable with

bit count

PicBasic Compiler

75

soloop rr _B0 ;Get low order bit of data

byte to carry

jnc solow ;If no carry then data bit

should be low

setb PortA.0 ;Otherwise set data bit

high

skip ;Skip over next instruction

solow clrb PortA.0 ;Set data bit low

setb PortA.1 ;Toggle clock high

clrb PortA.1 ;Toggle clock back low

djnz T0,soloop ;Loop to do all 8 bits

return ;Go back to main program when

done

_shiftin mov T0,#8 ;Setup temporary variable with

bit count

siloop setb PortA.1 ;Toggle clock high

clrb PortA.1 ;Toggle clock back low

clc ;Preset carry to off

snb PortA.0 ;If data bit is low then

skip over next

instruction

stc ;Else set carry to on

rl _B0 ;Roll bit into result byte B0

djnz T0,siloop ;Loop to do all 8 bits

goto done ;Exit through library

routine Done

endasm ‘End of assembly language code

Don’t forget to put an END or GOTO or some other mechanism at the end

of your PicBasic code to keep the processor from “falling into” your

assembler subroutines upon execution.

Also note that the function terminates by jumping to DONE rather than

simply returning. Returning would be fine, but the DONE function

performs other housecleaning needed by PBC (resetting the RP0 bit and

hitting the W atchdog). W is not affected by done.

If the assembler routine is destined to be used by several PicBasic

programs, it makes sense to put it into its own separate text file and

simply tell the assembler to INCLUDE this file.

PicBasic Compiler

76

‘PicBasic example program with assembler code included

in a separate file

loop: For B0 = 0 To 255 ‘Count up B0 in a For..Next

loop

Call shiftout ‘Call assembly routine to

shift B0 out PortA

Next B0 ‘Do next count

Call shiftin ‘Shift in a byte from PortA to

B0

Serout 0,N2400,(B0) ‘Send the byte out

serially on Pin0

Goto loop ‘Go do it all again

End

asm ‘Assembly language code

follows

include “shift.inc” ;Assembly code

will be inserted

here

endasm

The third option for using assembly code with a PicBasic program is to

add the code right into the PBH.INC or PBL.INC files. These files are

automatically included by the compiler.

This is the avenue most fraught with danger. These files are built in a

particular manner and caution should be exercised before changing

them. Also, as updates to the compiler are released, these files will

change and your routines would need to follow the changes. If this is the

path of choice, be sure to make copies of the original files and only work

from those copies.

7.2.3. Placement of In-line Assembly

PBC statements execute in order of appearance in the source. The first

executable line that appears is where the program starts execution. That

statement literally appears in memory right behind the controller’s startup

code. Similarly, the END implicit at the end of every PBC program is

PicBasic Compiler

77

accomplished by having the code for the END function appear first and

unconditionally in the library. It appears in memory directly behind the

user's last statements. This method saves two unneeded jumps and

everything normally works out all right.

The tendency of programmers is to place their own library functions

written using the inline assembler either before or after their code. In light

of the above explanation, this could create some obvious problems. If

they appear early in the program, the assembly routines execute prior to

any PBC instructions (some programmers will invariably exploit this

feature). If they appear at the tail of the program, execution which "falls

off the end" of the PBC statements may mysteriously find themselves

unintentionally executing assembly routines.

W hat should you do? Simple. Unlike a hosted system (such as the PC or

the Mac), there is little reason for an embedded system to terminate.

Thus, place your assembly routines after your PBC code. If you need to

terminate your program, explicitly place an END statement at the end of

your code rather then relying on the implicit END.

7.2.4. The PICmicro Macro Assembler

The PICmicro Macro Assembler (PM) included with the PicBasic

Compiler can use “8051 style” mnemonics or the Microchip mnemonics.

The included header files which define the register and bit names,

however, are in the 8051 form. This format includes the register name

and bit name into one symbol. This makes it quicker and easier to write

the code but also makes it somewhat incompatible with Microchip code

that may be scattered through their data books.

It is a fairly simple matter to convert these symbols as they are typed in

or use your text editor’s or word processor’s search and replace function

to change them.

For example, if the Microchip code says:

bsf status,rp0 ;set bit rp0

the equivalent PM code would be:

bsf rp0 ;set bit rp0

PicBasic Compiler

78

The reason behind this change is that the symbol RP0 is defined to

already include the information that it is in the Status register. See the

PM include files, P16F8x.INC for example, for a complete list of these

symbol definitions for each PICmicro MCU.

The assembler instruction set is listed in the appendix of this document.

For complete information on the PICmicro Macro Assembler, see the

PM.TXT file on disk.

7.3. Interrupts

Interrupts can be a scary and useful way to make your program really

difficult to debug.

Interrupts are triggered by hardware events, either an I/O pin changing

state or a timer timing out and so forth. If enabled (which by default they

aren’t), an interrupt causes the processor to stop whatever it is doing and

jump to a specific routine in the PICmicro MCU called an interrupt

handler.

Interrupts are not for the faint of heart. They can be very tricky to

implement properly, but at the same time they can provide very useful

functions. For example, an interrupt could be used to buffer serial input

data behind the scenes while the main PicBasic program is off doing

something else. (This particular usage would require a PICmicro MCU

with a hardware serial port.)

The PicBasic Compiler does not directly support interrupts, but that does

not mean they cannot be used. The PicBasic library routines are not

reentrant. This means that you cannot execute PicBasic statements from

within an interrupt handler - the interrupt handler must be written in

assembly language. This statement alone should be enough to strike

fear into the heart of the BASIC programmer.

However, if you just gotta do it, here are some hints on how to go about

it.

W hen an interrupt occurs, the PICmicro MCU stores the address of the

next instruction it was supposed to execute on the stack and jumps to

location 4. The first thing this means is that you need an extra location

on the PICmicro MCU stack, which is only 8 deep to begin with.

PicBasic Compiler

79

The PicBasic library routines can use up to 4 stack locations themselves.

The remaining 4 are reserved for CALLs and nested BASIC GOSUBs.

You must make sure that your GOSUBs are only nested 3 deep at most

with no CALLs within them in order to have a stack location available for

the return address. If your interrupt handler uses the stack (by doing a

Call itself for example), you’ll need to have additional stack space

available.

Once you have dealt with the stack issues, it gets even trickier. Since

you have no idea of what the processor was doing when it was

interrupted, you have no idea of the state of the W register, the Status

flags, PCLATH or even what register page you are pointing to. If you

need to alter any of these, and you probably will, you must save the

current values so that you can restore them before allowing the

processor to go back to what it was doing before it was so rudely

interrupted. This is called saving and restoring the processor context.

If the processor context is not left exactly the way you found it, all kinds of

subtle bugs and even major system crashes can and will occur.

This of course means that you cannot even safely use the compilers

internal variables for storing the processor context. You cannot tell which

variables are in use by the library routines at any given time.

W e have reserved three internal variables strictly for use by an interrupt

handler: I0, I1, and I2 (Only I0 has a real RAM location on a

PIC16C84. Use a PICmicro MCU with more RAM such as a PIC16F84

for access to the additional locations.) If you require more than these

variables, you can reserve as many of the user variables (B0, B1, ...) as

you like by simply not using them in your PicBasic program. You may

use these locations to store W, the Status register, or any other register

that may need to be altered by the interrupt handler.

The interrupt routine should be as short and fast as you can possibly

make it. If it takes too long to execute, the W atchdog Timer could timeout

and really make a mess of things. Perhaps the most useful function

would be to simply set a PicBasic variable to a particular value when an

interrupt occurs. W hen the PicBasic program sees this value, it knows

an interrupt has occurred and it can take the appropriate actions.

PicBasic Compiler

80

The interrupt handler itself may be placed in the file PBH.INC in the INC

subdirectory. Near the end of the file is the label Start. This is where

the PICmicro MCU will start executing code on reset, location 0. A few

lines down is a section of code that has been commented out. If this

code is uncommented, it will enable you to insert your interrupt handler at

location 4. Place your assembly language interrupt handler routine after

the ORG 4. The routine should end with an RETI instruction to return

from the interrupt and allow the processor to pick up where it left off in

your PicBasic program.

From this point you are on your own. If you follow the above

suggestions, your interrupt routine should be able to coexist peacefully

with your PicBasic program.

Definitely, definitely, definitely refer to the Microchip PICmicro MCU data

books for additional information on how to use interrupts. They give

examples of storing processor context as well as all the necessary

information to enable a particular interrupt. This data is invaluable to your

success.

7.4. Life After 2K

W hen a PicBasic program grows longer than 2K (which is a pretty big

program), problems will occur. PICmicro MCU instructions such as Call

and Goto only have enough bits within them to address 2K of program

space. To get to code outside the 2K boundary, the PCLATH register

must be set before each Call or Goto.

In the interest of minimizing program size, the PicBasic Compiler makes

no effort to address this problem. The 2K boundary presents a problem

to PICmicro MCU programming in any language; assembly, C, or

PicBasic.

If it is necessary for a program to be longer than 2K, the .ASM file the

compiler generates can be “fixed-up” and then assembled after setting

PCLATH before and after the appropriate instructions. It would probably

be best to use memory beyond 2K for large table storage to keep “fix-

ups” to a minimum.

See the Microchip PICmicro MCU data books for more information on

PCLATH and address sizes.

PicBasic Compiler

81

8. Compiler / Stamp Differences

Every effort has been made to assure that programs compiled by PBC

execute as they would on a BASIC Stamp I. Most programs will compile

and execute without error.

But, just as with all system which promise "compatibility", there are

always some slight differences. Some are due to improvements in code

executed directly on the PICmicro MCU rather than via the Stamp chip

set. Others are the result of the fact that the BASIC Stamp is a closed

system and its internal operations are unknown. W hile the results tested

well, we can never be 100% sure.

The following sections discuss the implementation details of PBC

programs that might present problems. It is hoped that if you do

encounter problems, these discussions will help illuminate the differences

and possible solutions.

8.1. Execution Speed

The largest potential problem shared by both library routines and user

code is speed. W ithout the overhead of reading instructions from the

EEPROM, many PBC instructions (such as GOTO and GOSUB) execute

hundreds of times faster than their BASIC Stamp equivalents. W hile in

many cases this is a benefit, programs whose timing has been developed

empirically may experience problems.

The solution is simple - good programs don't rely on statement timing.

W henever possible, a program should use handshaking and other non-

temporal synchronization methods. If delays are needed, statements

specifically generating delays (PAUSE, NAP or SLEEP) should be used.

8.2. Digital I/O

Unlike the BASIC Stamp, PBC programs operate directly on the PORT

and TRIS registers. W hile this has speed and RAM/ROM size

advantages, there is one potential drawback.

Some of the I/O commands (TOGGLE and PULSOUT) perform read-

modify-write operations directly on the PORT register. If two such

PicBasic Compiler

82

operations are performed too close together and the output is driving an

inductive or capacitive load, it is possible the operation will fail.

Suppose, for example, that a speaker is driven though a 10uF cap (just

as with the SOUND command). Also suppose the pin is initially low and the

programmer is attempting to generate a pulse using TOGGLE statements.

The first command reads the pin's low level and outputs its complement.

The output driver (which is now high) begins to charge the cap. If the

second operation is performed too quickly, it still reads the pin's level as

low, even though the output driver is high. As such, the second operation

will also drive the pin high.

In practice, this is not much of a problem. And those commands designed

for these types of interfacing (SOUND and POT, for example) have built-in

protection. This problem is not specific to PBC programs. This is a

common problem for PICmicro MCU (and other microcontroller)

programs and is one of the realities of programming hardware directly.

8.3. Missing PC Interface

Since PBC generated programs run directly on a PICmicro MCU, there is

no need for the Stamp's PC interface pins (PCO and PCI). The lack of a

PC interface does introduce some differences.

W ithout a PC, there is no place to send debugging information. Thus,

while PBC parses PBASIC's DEBUG commands, it doesn't generate code.

W ithout the PC to wake the PICmicro MCU from the END statement, it

remains in low power mode until /MCLR is lowered or power is cycled.

8.4. BUTTON

PBC's BUTTON command requires the programmer to specify an 8-bit

variable to store the current repeat count. The BASIC Stamp will allow

the use of any type of variable. W ord variables work fine, although they

are wasteful. On the Stamp, programs using bit variables for the BUTTON

command will compile and run, but the command will not behave

correctly. PBC's BUTTON command will also work correctly with word

variables. It does, however, generate a compiler error when an attempt is

made to use BUTTON with a bit variable.

PicBasic Compiler

83

The faster execution of PBC programs may be a problem for the BUTTON

command. The BUTTON command samples the input only once per

execution. Debouncing is achieved by the delay introduced by other

Stamp overhead (such as fetching instructions from EEPROM). Thus, a

BUTTON command which is executed too frequently might not provide as

good a "debounce" in PBC programs as it does on the BASIC Stamp.

8.5. EEPROM, READ and WRITE

The BASIC Stamp allows EEPROM not used for program storage to

store non-volatile data. Since PBC programs execute directly from the

PICmicro MCU's ROM space, EEPROM storage must be implemented in

some other manner.

The PIC16C84, 16CF62x, 8x and 87x devices have from 64 to 255 bytes

of on-chip data EEPROM. PBC programs may use this for EEPROM

operations and fully supports PBASIC's EEPROM, READ and WRITE

commands. The PIC16F87x devices do not return the device size when

location 255 is read.

To access off-chip non-volatile data storage, the I2CIN and I2COUT

instructions have been added. These instructions allow 2-wire

communications with serial EEPROMs like Microchip Technology’s

24LC01B.

8.6. GOSUB/RETURN

The Stamp implements subroutines via the GOSUB and RETURN

statements. User variable W6 is used by the Stamp as a four nibble stack.

Thus, PBASIC programs may have up to 16 GOSUBs and subroutines can

be nested up to four levels deep.

The 14-bit core PICmicro MCUs have Call and Return instructions as well

as eight level stacks. PBC programs make use of these instructions and

use four levels of this stack, with the other four levels being reserved for

library routines. Thus, W6 is still available, subroutines may still be nested

up to four levels deep and the number of GOSUBs is limited only by the

PICmicro MCU's code space.

PicBasic Compiler

84

8.7. RANDOM

PBC's RANDOM statement takes any word variable as its parameter. The

PBC library routine takes the address of the 16-bit word to randomize as

its parameter. Since PBC doesn't implement the PORT register as a true

16-bit memory location, the statement RANDOM PORT will produce a

compilation error.

8.8. SERIN/SEROUT

SERIN and SEROUT have been altered to run up to 9600 baud from the

previous limit of 2400 baud. This has been accomplished by replacing the

little used rate of 600 baud with 9600 baud. Modes of T9600, N9600,

OT9600 and ON9600 may now be used.

600 baud is no longer available and will cause a compilation error if an

attempt is made to use it.

8.9. Low Power Instructions

W hen the W atchdog Timer time-out wakes a PICmicro MCU from sleep

mode, execution resumes without disturbing the state of the I/O pins. For

unknown reasons, when the BASIC Stamp resumes execution after a low

power instruction (NAP or SLEEP), the I/O pins are disturbed for

approximately 18 mSec. PBC programs make use of the PICmicro

MCU's I/O coherency. The NAP instruction does not disturb the I/O pins.

Similarly, the Stamp's SLEEP instruction disturbs the I/O pins every W DT

time-out period, approximately every 2.3 seconds. PBC's SLEEP

instructions only disturbs the I/O pins once every 10 minutes. This is

done while recalibrating the period of the W DT.

8.10. SLEEP

The Stamp's documentation indicates its SLEEP command is ~99.8%

accurate. This may be overly optimistic. First, the granularity of the

SLEEP command is determined by the W atchdog Timer period, which is

typically 2.3 seconds. This introduces an average error of about 1

second. Even without this granularity, SLEEP is only as accurate as the

PICmicro MCU's system clock. In the BS1, the oscillator is a resonator,

whose accuracy is +/-1%.

PicBasic Compiler

85

Ignoring these effects, there is still the larger problem of variability in the

PICmicro MCU's W atchdog Timer. The W DT is driven by an R/C

oscillator and the period varies greatly with temperature.

To eliminate this error, the W DT is calibrated in terms of the system

clocks. This is done by counting system clocks while waiting for the W DT

to time-out. This calibrated period is then used to decrement the desired

sleep period. This keeps SLEEP to within the accuracy of the system

clock (ignoring the granularity of the W DT).

PBC's SLEEP command performs this recalibration every 257 cycles or

about once every 10 minutes. It recalibrates for a full W DT period (about

2.3 seconds). This results in the PICmicro MCU being active about

0.38% of the time during the SLEEP command. For the PIC16F84 at

4MHz with the W DT enabled, Microchip specifies a typical operating

current of 1.8mA and a power down current of 40uA. Using these figures,

PBC's SLEEP draws approximately 47uA.

This is more than the current levels claimed by the BASIC Stamp. This is

due to the fact that the PIC16C5x family has a lower power-down current

consumption than members of the PIC16Cxxx family.

W ith all the above said, it has been determined that a calibrated SLEEP

command may not work properly on all PICmicro MCUs. During SLEEP

calibration, the PICmicro MCU is reset. Different devices respond in

different ways to this reset. Upon reset, many registers may be altered.

Notably the TRIS registers set all the PORT pins to inputs. The TRIS

state for PORTB is automatically saved and restored by the SLEEP

routine. Any other PORT directions must be reset by the user program

after SLEEP. Other registers may also be affected. See the data sheets

for a particular part for this information.

To get around potential problems, an uncalibrated version of SLEEP has

been created. This version does not cause a device reset so it has no

effect on any of the internal registers. All the registers, including PORT

direction, remain unchanged during and after a SLEEP instruction.

However, actual SLEEP times will no longer be as accurate and will vary

dependent on device particulars and temperature.

PicBasic Compiler

86

The uncalibrated version of SLEEP is now the default. To enable the

previous, calibrated version of SLEEP add the following lines to a PBC

program:

asm

SLEEPCAL = 1

endasm

PicBasic Compiler

87

Appendix A

Summary of Microchip Assembly Instruction Set

ADDLW k
ADDWF f, d
ANDLW k
ANDWF f, d
BCF f, b
BSF f, b
BTFSC f, b
BTFSS f, b
CALL k
CLRF f
CLRW
CLRWDT
COMF f, d
DECF f, d
DECFSZ f, d
GOTO k
INCF f, d
INCFSZ f, d
IORLW k
IORWF f, d
MOVF f, d
MOVLW k
MOVWF f
NOP
RETFIE
RETLW k
RETURN
RLF f, d
RRF f, d
SLEEP
SUBLW k
SUBWF f, d
SWAPF f, d
XORLW k
XORWF f, d

b - bit address
d - destination: 0 = w, 1 = f
f - register file address
k - literal constant

PicBasic Compiler

88

PicBasic Compiler

89

Appendix B

Contact Information

Technical support and sales may be reached at:

microEngineering Labs, Inc.

Box 60039

Colorado Springs CO 80960-0039

(719) 520-5323

(719) 520-1867 fax

http://www.melabs.com

email:support@melabs.com

PICmicro MCU data sheets and literature may be obtained from:

Microchip Technology Inc.

2355 W . Chandler Blvd.

Chandler AZ 85224-6199

(480) 792-7200

(480) 792-7277 fax

http://www.microchip.com

email:literature@microchip.com

READ THE FOLLOWING TERMS AND CONDITIONS CAREFULLY

BEFORE OPENING THIS PACKAGE.

microEngineering Labs, Inc. ("the Company") is willing to license the

enclosed software to the purchaser of the software ("Licensee") only on

the condition that Licensee accepts all of the terms and conditions set

forth below. By opening this sealed package, Licensee is agreeing to

be bound by these terms and conditions.

Disclaimer of Liability

THE COMPANY DISCLAIMS ALL WARRANTIES, EXPRESS OR

IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED

WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE AND THE

IMPLIED WARRANTY OF MERCHANTABILITY. IN NO EVENT

SHALL THE COMPANY OR ITS EMPLOYEES, AGENTS, SUPPLIERS

OR CONTRACTORS BE LIABLE FOR ANY INCIDENTAL, INDIRECT,

SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR IN

CONNECTION WITH LICENSE GRANTED UNDER THIS

AGREEMENT, INCLUDING WITHOUT LIMITATION, LOST PROFITS,

DOWNTIME, GOODWILL, DAMAGE TO OR REPLACEMENT OF

EQUIPMENT OR PROPERTY, OR ANY COSTS FOR RECOVERING,

REPROGRAMMING OR REPRODUCING ANY DATA USED WITH THE

COMPANY'S PRODUCTS.

Software License

In consideration of Licensee's payment of the license fee, which is part of

the price Licensee paid for this product, and Licensee's agreement to

abide by the terms and conditions on this page, the Company grants

Licensee a nonexclusive right to use and display the copy of the

enclosed software on a single computer at a single location. Licensee

owns only the enclosed disk on which the software is recorded or fixed,

and the Company retains all right, title and ownership (including the

copyright) to the software recorded on the original disk copy and all

subsequent copies of the software. Licensee may not network the

software or otherwise use it on more than one computer terminal at the

same time. Copies may only be made for archival or backup purposes.

The enclosed software is licensed only to the Licensee and may not be

transferred to anyone else, nor may copies be given to anyone else. Any

violation of the terms and conditions of this software license shall result in

the immediate termination of the license.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50

